Springer Nature
Browse
13287_2020_1653_MOESM1_ESM.zip (485.27 kB)

Additional file 1 of MSX2 suppression through inhibition of TGFβ signaling enhances hematopoietic differentiation of human embryonic stem cells

Download (485.27 kB)
dataset
posted on 2020-04-06, 03:14 authored by Hongtao Wang, Mengge Wang, Yu Wang, Yuqi Wen, Xiaoyuan Chen, Dan Wu, Pei Su, Wen Zhou, Lihong Shi, Jiaxi Zhou
Additional file 1 : Figure S1. MSX2 is suppressed upon inhibition of TGFβ signaling during hematopoietic differentiation of hESCs. (A) Heatmap showing down-regulated TFs upon SB treatment. (B) TFs that were predicted to be upstream of the suppressed hematopoiesis-associated genes. The size and color of the bubble indicate combined score and p-value of the predicted term. (C) The real-time PCR analysis of the signature genes of each population in undifferentiated hESCs, MEs (APLNR+), HEPs (CD31 + CD34+) and HPCs (CD43+) generated from hESCs after hematopoietic differentiation. Relative expression is normalized to the level (=1) of undifferentiated hESCs. Results are shown as means ±SD (n = 3). Figure S2. MSX2 deletion augments the hematopoietic differentiation of hESCs. (A) Schematic overview showing the experimental design to determine the hematopoietic potential of APLNR+ mesoderm cells. APLNR+ cells were sorted at day 2 of hematopoietic differentiation and seeded into the hematopoietic culture for 5 days before CD43 flow cytometry analysis. (B) Flow cytometry analysis showing the generation of CD43+ HPCs emerging from H1 WT and H1 MSX2−/− APLNR+ cells. Figure S3. MSX2 deletion had no effect on BMP, WNT and FGF signaling. (A) GSEA of WNT signaling between WT and MSX2−/− cells. (B) GSEA of BMP signaling between WT and MSX2−/− cells. (C) GSEA of FGF signaling between WT and MSX2−/− cells. Figure S4. MSX2 mediates the function of TGFβ signaling during EHT. (A) Left panel: Flow cytometry analysis showing the percentage of CD43+ cells from H1 cells with or without MSX2 overexpression in the absence or presence of SB-431542 at day 8 of hematopoietic differentiation. Right panel: The fold increase of CD43+ cell generation from H1 cells with or without MSX2 overexpression after SB treatment. (B) Left panel: Flow cytometry analysis showing the percentage of CD43+ subpopulation gated on CD31+ cells from H1 cells with or without MSX2 overexpression in the absence or presence of SB-431542 at day 8 of hematopoietic differentiation. Right panel: The fold increase of CD43+ subpopulation generation gated on CD31+ cells from H1 cells with or without MSX2 overexpression after SB treatment. (C) Left panel: Flow cytometry analysis showing the percentage of CD43+ cells from H1 WT and H1 MSX2−/− cells with or without TGFβ1 treatment at day 8 of hematopoietic differentiation. Right panel: The fold increase of CD43+ cell generation from H1 WT and H1 MSX2−/− cells after TGFβ1 treatment. (D) Left panel: Flow cytometry analysis showing the percentage of CD43+ subpopulation gated on CD31+ cells from H1 WT and H1 MSX2−/− cells with or without TGFβ1 treatment at day 8 of hematopoietic differentiation. Right panel: The fold increase of CD43+ subpopulation generation gated on CD31+ cells from H1 WT and H1 MSX2−/− cells after TGFβ1 treatment. (E) Real-time PCR analysis of MSX2 in H1 hESCs expressing ishMSX2–1, ishMSX2–2 or expressing a scramble shRNA (ishScramble) after the addition of DOX (2 μg/ml) during the transition from HEP to HPCs. All values are normalized to the level (= 1) of mRNA in H1 hESCs expressing a scramble shRNA (ishScramble). (F) Left panel: Flow cytometry analysis showing the percentage of CD43+ cells from H1 ishScramble and H1 MSX2-knockdown cells after the addition of DOX (2 μg/ml) during the transition from HEP to HPCs with or without TGFβ1 treatment. Right panel: The fold increase of CD43+ cell generation from H1 ishScramble and H1 MSX2-knockdown cells after TGFβ1 treatment. (G) Left panel: Flow cytometry analysis showing the percentage of CD43+ subpopulation gated on CD31+ cells from H1 ishScramble and H1 MSX2-knockdown cells after the addition of DOX (2 μg/ml) during the transition from HEP to HPCs with or without TGFβ1 treatment. Right panel: The fold increase of CD43+ subpopulation generation gated on CD31+ cells H1 ishScramble and H1 MSX2-knockdown cells after TGFβ1 treatment.

Funding

National Natural Science Foundation of China National Key Research and Development Program of China Stem Cell and Translational Research CAMS Initiative for Innovative Medicine Natural Science Foundation of Tianjin City Key Programme

History

Usage metrics

    Stem Cell Research & Therapy

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC