MOESM2 of The interplay between miR156/SPL13 and DFR/WD40–1 regulate drought tolerance in alfalfa

Additional file 2: Table S2. LCMS-based metabolite profiles of drought stressed alfalfa plants. Table S3 GCMS-based relative metabolite abundance in drought stressed alfalfa plants. Table S4 Buffers used in ChIP assay and their components. Table S5.1 Analysis of variance, ANOVA, P values of data for phenotype and physiological responses in miR156OE genotypes and EV plants. Table S5.2 Analysis of variance, ANOVA, P values of data for phenotype, physiological and metabolite responses in SPL13RNAi genotypes and EV plants. Table S5.3 Analysis of variance, ANOVA, P values of data for phenotype and physiological responses in WD40–1OE, WD40–1RNAi and wild type plants. Table S5.4 Analysis of variance, ANOVA, P values of data for LCMS-based metabolite profiling in miR156OE genotypes and EV alfalfa plants. Table S5.5 Analysis of variance, ANOVA, P values (P > F) of data for GCMS-based metabolite profiling in miR156OE genotypes and EV alfalfa plants. Table S5.6 Analysis of variance, ANOVA, P values of data for qRT-PCR based transcript level in miR156OE genotypes and EV alfalfa plants. Table S5.7 Analysis of variance, ANOVA, P values of data for qRT-PCR based transcript level in SPL13RNAi genotypes and EV alfalfa plants. Table S5.8 Analysis of variance, ANOVA, P values of data for ChIP-qPCR based transcript level in p35S:SPL13-GFP genotypes and Wild-type alfalfa plants. Table S5.9 Analysis of variance, ANOVA, P values of data for qRT-PCR based transcript level in WD40–1RNAi silenced and WD40–1over expressing plants. Figure S1 Stem colour development in miR156OE plants during drought stress. Figure S2 Alignment of sequences of amplified by q-PCR from Medicago sativa with those of their counterparts in Medicago truncatula. Figure S3 Promoter sequence of the alfalfa DIHYDROFLAVONOL-4-REDUCTASE (DFR) gene with putative SBD binding elements. Figure S4 Nucleotide sequence of the alfalfa WD40–1 promoter region.