Springer Nature
Browse
13020_2019_266_MOESM1_ESM.pdf (1.41 MB)

MOESM1 of Dynamic observation and analysis of metabolic response to moxibustion stimulation on ethanol-induced gastric mucosal lesions (GML) rats

Download (1.41 MB)
journal contribution
posted on 2019-10-16, 04:02 authored by Yuan Zhang, Miao-sen Huang, Cai-chun Liu, Lin-yu Lian, Jia-cheng Shen, Qi-da He, Ying-jie Wang, Long-bin Zhang, Mi Liu, Zong-bao Yang
Additional file 1. Figure S1. Histological morphology of gastric mucosa from 12 groups. (A1, B1, C1 and D1, rats in control group, gastric mucosal lesions model group, moxibustion-acupoint group and moxibustion-nonacupoint group at 1 day, respectively; A2, B2, C2 and D2, rats in control group, gastric mucosal lesions model group, moxibustion-acupoint group and moxibustion-nonacupoint group at 4 days, respectively; A3, B3, C3 and D3, rats in control group, gastric mucosal lesions model group, moxibustion-acupoint group and moxibustion-nonacupoint group at 7 days, respectively; Scale bars represent 200 μm in each group.) Figure S2. Corresponding S-plots from the GML rats and the control rats in stomach (a1, a2 and a3), cerebral cortex (b1, b2 and b3) and medulla (c1, c2 and c3) tissues for three time points. Figure S3. Corresponding S-plots from the GML rats and the GML rats with moxibustion acupoints(MA) treatment in stomach (a1, a2 and a3), cerebral cortex (b1, b2 and b3) and medulla (c1, c2 and c3) tissues for three time points. Figure S4. Summaries of metabolic pathways in gut-brain integration altered moxibustion treatment on GML rats. Moxibustion intervention showed beneficial effects by regulating many GML-induced metabolic changes involved in energy metabolism, amino acids metabolism and membrane metabolism. (1, Phenylalanine, tyrosine and tryptophan biosynthesis; 2, d-Glutamine and d-glutamate metabolism; 3, Valine, leucine and isoleucine biosynthesis; 4, Alanine, aspartate and glutamate metabolism; 5, Glycine, serine and threonine metabolism; 6, Glutathione metabolism; 7, Phenylalanine metabolism; 8, Methane metabolism; 9, Glyoxylate and dicarboxylate metabolism; 10, Taurine and hypotaurine metabolism; 11, Citrate cycle (TCA cycle); 12, Pyruvate metabolism; 13, Starch and sucrose metabolism; 14, Aminoacyl-tRNA biosynthesis; 15, Glycolysis or Gluconeogenesis; 16, Arginine and proline metabolism; 17, Cysteine and methionine metabolism; 18, Tyrosine metabolism; 19, Primary bile and biosynthesis; 20, Glycerophospholipid metabolism.). Table S1. Peak attribution of the main marked metabolites in 1H-NMR spectra of stomach, cerebral cortex, medulla. Table S2. The alteration metabolites from stomach tissue. Table S3. The alteration metabolites from cerebral cortex tissue. Table S4. The alteration metabolites from medulla tissue.

Funding

National Natural Science Foundation of China

History