Springer Nature
Browse
13395_2020_226_MOESM5_ESM.pdf (1.02 MB)

Additional file 5 of High-throughput proteomics fiber typing (ProFiT) for comprehensive characterization of single skeletal muscle fibers

Download (1.02 MB)
journal contribution
posted on 2020-03-24, 04:56 authored by Sebastian Kallabis, Lena Abraham, Stefan Müller, Verena Dzialas, Clara Türk, Janica Lea Wiederstein, Theresa Bock, Hendrik Nolte, Leonardo Nogara, Bert Blaauw, Thomas Braun, Marcus Krüger
Additional file 5 : Suppl. Figure 5: In-vivo SILAC reveals similar Lys-6 labeling after 14 days of MYH isoforms and muscle groups. A) Lys-6 labeling of type I muscle fibers from the soleus ranged from 10% to 80%, with the majority of proteins exhibiting 30–-40% Lys-6 labeling. Notably, albumin (ALB) and transferrin (TF) exhibited ~70% Lys-6 labeling; representative SILAC pairs for the albumin peptide TPVSEHVTK substantiated this high Lys-6 labeling. Grey circles indicate the Lys-0 peptide; red circles the Lys-6-labeled peptide. B) On average, liver proteins exhibited higher Lys-6 labeling rates ranging from ~60–85%. Albumin and transferrin had the same Lys-6 labeling rates in liver tissues as in muscle fibers, suggesting that albumin and transferrin are taken up by muscle fibers via the blood system. The same albumin peptide (TPVSEHVTK) showed similar Lys-6 labeling in muscle fibers and liver tissues. C) Selected SILAC pairs of muscle fiber proteins. The grey circle marks a non-labeled “light” Lys-0 peptide and the red circle illustrates the newly synthesized “heavy” Lys-6 peptide. Titin exhibited very similar Lys-6 incorporation rates in type I and IIa fibers (~31%), whereas Myomesin 2 had a lower incorporation rate in type I fibers (~38%) than type IIa fibers ( ~46%). Conversely, isocitrate-dehydrogenase 3b showed a higher Lys-6 labeling rate in type I ( ~54%) than type IIa fibers ( ~44%).

Funding

Deutsche Forschungsgemeinschaft

History

Usage metrics

    Skeletal Muscle

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC