Springer Nature
Browse
12862_2018_1275_MOESM2_ESM.pdf (458.01 kB)

Additional file 2: of Variable gene transcription underlies phenotypic convergence of hypoxia tolerance in sculpins

Download (458.01 kB)
journal contribution
posted on 2018-11-03, 05:00 authored by Milica Mandic, Marina Ramon, Aleeza Gerstein, Andrew Gracey, Jeffrey Richards
Figure S2. Transcript levels of genes associated with metabolism. Colours and symbols represent different species: the smoothhead sculpin (black line, square symbol), sailfin sculpin (blue line, diamond symbol) and Pacific staghorn sculpin (red line, inverted triangle symbol) exposed to 72 h of hypoxia. Solid lines represent the genes for which transcription significantly changed in response to hypoxia for a given species (q < 0.01) and dashed lines represent genes for which transcription did not significantly change in response to hypoxia. Opaque lines represent the portion of the time-course that is the focus of the difference among the species, while transparent lines represent the portion of the time-course for which transcription does not differ among the species. Letters represent significant difference in transcript levels between species (A-B represent difference in the short term hypoxia and X-Z represent differences in the long term hypoxia). Data are represented as mean ± SE. The genes in the panels are classified in the following categories: glycogen metabolic process (protein phosphatase 1 regulatory subunit 3C-B [ppp1r3cb], glycogen debranching enzyme [GDE] and phosphoglucomutase-1 [PGM1]), glycolysis (fructose-bisphosphate aldolase B [ALDOB], alpha-enolase [ENO1] and glyceraldehyde-3-phosphate dehydrogenase [GAPDH], polyol pathway (aldose reductase [AKR1B1]), the pentose-phosphate shunt (GDH/6PGL endoplasmic bifunctional protein [H6PD]), pyruvate metabolic process (pyruvate dehydrogenase kinase isozyme 4 [PDK] and mitochondrial pyruvate carrier 1 [MPC1]), fatty acid oxidation (hydroxyacyl-coenzyme A dehydrogenase [HADH]), tricarboxylic acid cycle (ATP-citrate synthase [ACYL]), oxidative phosphorylation (cytochrome b-c1 complex subunit 6 [UQCRH], ATPase inhibitor [ATPIF1], NADH dehydrogenase iron-sulfur protein 8 [NDUFS8] and HIG1 domain family member 1A [HIGD1A]), amino acid degradation (homogentisate 1,2-dioxygenase [HGD] and 4-hydroxyphenylpyruvate dioxygenase [HPD]) and amino acid biosynthesis (betaine—homocysteine S-methyltransferase 1 [BHMT] and beta-ureidopropionase [UPB1]). (PDF 458 kb)

Funding

Natural Sciences and Engineering Research Council of Canada

History