Additional file 1: of i-GONAD: a robust method for in situ germline genome engineering using CRISPR nucleases

Figure S1. Fetuses recovered from the i-GONAD procedure to edit the Tyr gene. Figure S2. Germline transmission of Tyr-gene-corrected allele. Figure S3. Generation of reporter knock-in mice at the Tis21 locus using the GONAD method. Figure S4. Generation of indel mutation in the Tyr locus of various mouse strains using i-GONAD. Figure S5. Generation of indel mutation in the Kit locus of C3H/HeSlc and C57BL/6NCrSlc mouse strains using i-GONAD. Figure S6. Knock-in of ssODN into Cdkn1a and Cdkn2a loci in the C57BL/6NCrl mouse strain using i-GONAD. Figure S7. Restoration of Tyr mutation of albino Jcl:MCH(ICR) mice by ssODN-based knock-in using i-GONAD with AsCpf1. Figure S8. i-GONAD-used females retain reproductive capability. Table S1. Generation of Foxe3 knock-out mice using conventional GONAD and i-GONAD approaches. Table S2. Correction of Tyr mutation by ssODN knock-in using the i-GONAD method. Table S3. Correction of Tyr mutation by zygote microinjection of CRISPR/Cas9 components. Table S4. Restoration of agouti gene expression by elimination of retrotransposon sequence using the i-GONAD method. Table S5. Generation of reporter gene knock-in mice using i-GONAD with ssDNA as donors. Table S6. Editing of the Hprt locus using i-GONAD with AsCpf1. Table S7. Correction of Tyr mutation using the i-GONAD with AsCpf1. Table S8. CRISPR target sequences and the types of gRNA used. Table S9. Sequences of the oligonucleotides used in this study. (PDF 7440 kb)