Springer Nature
Browse
11671_2019_3110_MOESM1_ESM.docx (4.91 MB)

Additional file 1: of Quick Optical Identification of the Defect Formation in Monolayer WSe2 for Growth Optimization

Download (4.91 MB)
journal contribution
posted on 2019-08-15, 05:02 authored by Long Fang, Haitao Chen, Xiaoming Yuan, Han Huang, Gen Chen, Lin Li, Junnan Ding, Jun He, Shaohua Tao
Figure S1. More optical images of WSe2 samples grown on sapphire substrates: (a) 860 oC, (b) 880 oC, (c) 900 oC, (d) 920 oC and (e) 940 oC. Figure S2. Optical microscopy images of WSe2 grown for (a) 4 min, (b) 7 min, (c) 10 min and (d) 20 min. The growth temperatures are 920 oC for all cases. Figure S3. Raman spectra of five different monolayer WSe2 samples grown at (a) 860 oC, (b) 880 oC, (c) 900 oC, (d) 920 oC and (e) 940 oC, respectively. Figure S4. Raman spectra of 5 different monolayer WSe2 samples grown at (a) 860 oC, (b) 880 oC, (c) 900 oC, (d) 920 oC and (e) 940 oC, respectively. Figure S5. More PL integral intensity mapping of WSe2 monolayer: (a) 900 oC, (b) 920 oC and (c) 940 oC, respectively. (d) PL intensity mapping of WSe2 grown at 920 oC after placing in the air for another 90 days. Figure S6. Deconvoluted spectra obtained with excitation laser power levels of 5 μW, 10 μW, 50 μW, 100 μW and 500 μW, respectively, corresponding to the positions in the center region. Figure S7. Deconvoluted spectra obtained with excitation laser power levels of 5 μW, 10 μW, 50 μW, 100 μW and 500 μW, respectively, corresponding to the positions in the edge region. Figure S8. The deconvoluted PL peak position (a) and FWHM (b) of neutral exciton (A), trion (A+), and defects (D) as a function of laser power at the center and edge regions, respectively. The excitation power is 50 μW. (DOCX 5032 kb)

Funding

National Natural Science Foundation of China (CN)

History