Springer Nature
Browse
13395_2020_226_MOESM1_ESM.pdf (1.44 MB)

Additional file 1 of High-throughput proteomics fiber typing (ProFiT) for comprehensive characterization of single skeletal muscle fibers

Download (1.44 MB)
journal contribution
posted on 2020-03-24, 04:56 authored by Sebastian Kallabis, Lena Abraham, Stefan Müller, Verena Dzialas, Clara Türk, Janica Lea Wiederstein, Theresa Bock, Hendrik Nolte, Leonardo Nogara, Bert Blaauw, Thomas Braun, Marcus Krüger
Additional file 1 : Suppl. Figure 1: LC-MS gradient optimization and identification of unique peptides from different MYH isoforms. A) Calculation of absolute copy numbers per nucleus by spike-in of the Proteomics Dynamic Range Standard (UPS2) indicates the high dynamic range of muscle fibers. The detection limit was estimated to be ~200 protein copies per muscle fiber nucleus. Conversely, the most abundant protein MYH1 had a copy number of 3x1011 copies per nucleus. The dashed red line indicates a local regression (locally weighted scatterplot smoothing). B) Absolute protein copy numbers calculated with the UPS2 kit or the Proteomic Ruler approach. C-E) Bar diagrams indicating identified C) peptides, D) proteins and E) unique MYH peptides identified from 23 single muscle fibers of the soleus muscle using a linear ion trap instrument. LC-MS gradients ranged from 10 min to 240 min. F) Muscle fiber type distribution between a linear ion trap Orbitrap (LTQ Orbitrap) coupled to an Easy nLC II and a quadrupole Orbitrap (QExactive HF-X) instrument coupled to a Dionex Ultimate 3000 UHPLC. Colored dots indicate the predominant MYH protein in the respective muscle fiber. G) Comparison of the top 6 MYH1, MYH2 and MYH7 peptide intensities identified on an Easy nLC II-LTQ Orbitrap setup and a CAP-LC-QExactive HF-X setting. H) Measurement of peptide carry-over after a ProFiT run using 10 min chromatographic gradients. No detectable carryover of peptides was observed between samples of single muscle fibers and blank runs. The measured intensities of blank runs were 2-3 orders of magnitude lower compared to the single muscle fiber samples and virtually no MYH peptides were detectable in blank runs. I-J) Top five most abundant unique MYH peptides from three different isoforms were identified using either I) the Easy nLC-II-LTQ Orbitrap or J) the CAP-LC-QExactive HF-X setting. The peptide position within each protein is illustrated in the upper panel. The exact position and retention times are listed in Table S2.

Funding

Deutsche Forschungsgemeinschaft

History

Usage metrics

    Skeletal Muscle

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC