Additional file 1: of Antioxidant-upregulated mesenchymal stem cells reduce inflammation and improve fatty liver disease in diet-induced obesity

Figure S1. Changes in body weight of DIO mice fed high-fat diets (45% and 60% HFD) prior to MSCs transplantation (n= 10 each group). Arrows indicate time point that animals received MSCs. Table S1. Body weight of mice prior and post MSCs injection: Null-MSCs, Sod2-MSCs and Cat-MSCs. Figure S2. Upregulation of Sod2 and Cat in fat-derived MSCs transduced with adenovirus. After cells were transduced with Ad-Sod2-GFP, Ad-Cat-GFP, and Ad-Null-GFP, MSCs were then cultured in adipogenic media (Lonza) in alternated cycles of 3 days of induction and 1 day of maintenance (3-cycles total). The results correspond to two independent experiments, *p<0.05 (multiple t-tests corrected for multiple comparisons using the Holm-Sidak method). Gene expression was normalized to 18S and values are relative to control (Null-MSCs). Figure S3. A) Representative western blot image showing the presence of Sod2 and beta-actin (control) in omental fat from 45% HFD mice which received Null-MSCs (lane 1) and Sod2-MSCs (lane 2). B) Relative quantification of the Sod2 bands showed in A) was performed with ImageJ using beta-actin as a loading control. The results are shown as Sod2/beta-actin ratio and indicated higher amounts of Sod2 in the fat depots for mouse that received Sod2-MSCs (n=2). Figure S4. Representative image of DIO mice that received 1.5 x 106 MSCs previously transduced with AdNull (control), AdSod2, and AdCat, Cells were intraperitoneally transplanted into DIO mice and monitored for 28 days. Longitudinal whole-body fluorescent imaging of mice fed a 60% HFD demonstrates the feasibility of tracking MSCs over time. The imaging system indicates possible MSCs homing to different adipose tissue regions and prominent florescence at day 7 with persistence of signal at day 28 (at the time of sacrifice), post MSC delivery. (DOCX 1488 kb)